

1

 lath Jauzt, daczar in atuz, vo.

$$
v_{0}+\mu_{2} g z_{2}=u, \quad\left(a_{2}=\frac{\mu_{2} n g}{n}=\mu_{2} g\right)
$$

 (vosd $v_{0} \neq v^{\prime}$

$$
v_{0}-\mu_{1} g t_{1}=-v, \quad\left(a_{1}=-\frac{\mu_{1} m g}{m}=-\mu_{1} g\right)
$$

$$
\left.=v^{\prime} t_{1}^{\prime}+\frac{v^{2}-2 v^{\prime}+2 t^{\prime} \mu_{2} g v^{\prime}}{2 \mu_{2} g}-\frac{4 v^{\prime 2}-4 v^{2}+2 t^{\prime} \mu_{1} g v^{\prime}}{2 \mu_{2} g}=A A g\right)=t^{\prime} v^{\prime}-\frac{v^{\prime 2}}{2 \mu_{2} g}-t^{\prime} v^{\prime}+v^{\prime \prime} \frac{v_{2}^{\prime}}{-\frac{v^{\prime}}{2 \mu g}+t_{2}^{\prime}}
$$

$$
S_{2}=\left(\frac{\mu_{2} g p_{2}\left(\frac{v^{\prime}-\left(-v^{\prime}\right)}{\mu_{2} g}\right)^{2}}{2}-\mu_{1} g\left(\frac{2 v^{\prime}}{\mu_{1} g}\right)^{2}+\left(t^{2}-\frac{v^{2}\left(-v^{\prime}\right)}{\mu_{2} g}\right) v^{\prime}-\left(t^{\prime}, \frac{v^{\prime}+v^{\prime}}{\mu_{1} g}\right)^{\prime} v_{n} t=\right.
$$

$$
\begin{aligned}
& 102 \geq t^{\prime} \\
& S_{1}=\frac{\mu_{2} g \cdot\left(\frac{v^{\prime}-v}{v_{2} g}\right)^{2}}{2}+v^{2} Z_{2}^{\prime}-u_{2} g \cdot\left(\frac{v^{\prime}+v}{\mu_{1} g}\right)^{2}+\left(t^{2}-\frac{v^{\prime}-v}{\mu_{2} g}\right) v^{2}- \\
& -\left(t^{\prime}-\frac{v^{\prime}+v^{\prime}}{\mu_{1} g}\right)^{2}=v^{\prime} t^{\prime} \frac{v^{\prime 2}}{2 \mu_{2} g}-\frac{4 v^{22}}{2 \mu_{1} g}+\frac{\left(t^{\prime} \mu_{2} g-v^{\prime}\right)_{v}}{\mu_{2} g}-\left(t^{\prime} \mu_{1} g-2 v\right) v^{\prime} g v_{1} g
\end{aligned}
$$

дszo@s N
4

308
samos
2
roacen $h_{-j} \operatorname{sol}_{3} \mu \mathrm{~g}$ gुndma

$$
\text { - } 3303 \mathrm{~mm} \quad S_{1} \text { so } S_{1} \frac{S_{2}}{n-1}=1 a_{0} \text {. }
$$

$$
=\frac{h\left(\frac{v^{\prime 2}}{\omega_{1} g}-\frac{v^{\prime} 2}{\omega_{2} g}\right)}{2 \lambda t^{\prime}}=\frac{v^{\prime 2}}{\mu_{1} g t^{\prime}}-\frac{v^{\prime 2}}{\mu_{2} g t^{\prime}}
$$

$\xi l y b n: V_{v y}=\frac{v^{\prime 2}}{u^{\prime} g t^{\prime}}-\frac{v^{\prime 2}}{\mu_{2} g t^{\prime}}=\frac{v^{\prime 2}}{g t^{\prime}}\left(\frac{1}{\mu_{1}}-\frac{1}{\mu_{2}}\right)=\frac{2 x / 2}{100 / \sigma^{2} \cdot 102}\left(\frac{1}{0,3}-\frac{1}{0,4}\right)=$

$$
=0,2 \frac{0,4=0,3}{0,12}=0,1 \cdot \frac{0,1}{0,12}=\frac{0,01}{0,12}=\frac{1}{12} 2162
$$

$$
\begin{aligned}
& =\left(\frac{4 v^{\prime 2}}{2 \mu_{2} g}-\frac{4 v^{\prime 2}}{2 \mu_{1} g}+\frac{\left(t^{\prime} \mu_{2} g-2 v^{\prime}\right) v^{\prime}}{\mu_{2} g}-\frac{\left(2^{2} \mu_{1} g-2 v^{\prime}\right) v^{\prime}}{\mu_{1} g}=\frac{4 v^{2}+2 t \mu_{2} g v^{\prime}-4 v^{2 z}}{2 \mu_{2} g}-v_{1}^{\prime} t\right.
\end{aligned}
$$

$$
\begin{aligned}
& -v^{\prime} t_{1}^{\prime}+v^{\prime} t_{1}^{\prime} \prime=(n-1)\left(\frac{2 v^{2}}{\mu_{1} g}-\frac{2 v^{\prime 2}}{\mu_{2} g}\right) \\
& S_{1}=\frac{-v^{2}}{2 \mu g}+\frac{2 v^{2}}{\mu_{1} g} \\
& S_{1}^{\prime}=\frac{-v^{\prime 2}}{2 \mu_{1} g}-\frac{2 v^{2}}{\mu_{2} g}
\end{aligned}
$$

дsдo@s N

4
3

$$
\begin{aligned}
& \text { 3.2.2. } \quad C_{0}=\frac{\varepsilon \varepsilon_{0} S}{d} \quad C_{1}=\frac{\varepsilon \varepsilon_{0} s}{d+\Delta x} \\
& \Delta C=C_{1}-C_{0}=\frac{\varepsilon \varepsilon_{0} s}{d+\Delta x}-\frac{\varepsilon \varepsilon_{0} S}{d}=\frac{\varepsilon \varepsilon_{0} d d-\varepsilon \varepsilon_{0} S d}{d(d+\Delta x)}-\varepsilon \varepsilon_{0} S \Delta x= \\
& =\frac{-\varepsilon_{0} \delta_{\Delta x}}{(d+\Delta x) d} \quad L_{0} z^{2} \alpha \Delta x / d \ll 1 \Delta C=\frac{-\varepsilon \varepsilon_{0} S_{\Delta x}}{d^{2}}
\end{aligned}
$$

3.1.2. $\quad C A=\triangle$

$$
\begin{aligned}
& U_{0}=\frac{Q}{U_{0}} \quad Q \text { oh } \sqrt{3} \mathrm{~m}^{5} \\
& U_{1}=\frac{Q}{C_{1}} \quad \Delta U=-\frac{B}{C_{0}}+\frac{Q}{C_{0}-\frac{\Delta x C}{d}}=\frac{-\left(\frac{1}{d}-\frac{\Delta x}{d}\right) Q+Q}{C_{0}\left(1-\frac{\Delta x}{d}\right)}=\frac{+\Delta x Q}{\frac{\Delta d-C_{0}}{d}}=\frac{+\Delta x Q}{C_{0}(d-\Delta x)} \\
& \Delta U / U_{0}=\frac{\frac{t \Delta B}{\delta_{0}(d-\Delta x)}}{Q_{0}} \cdot \frac{Q_{0}}{Q}=\frac{A \Delta x}{d-\Delta x} \\
& W_{0}=U_{0}{ }^{2} C_{0}+\frac{2 I_{0}{ }^{2}}{2} \\
& I ल \quad I_{0}=I_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& W_{1}=\cos _{1}+20_{1}^{*}+\cos ^{2} \operatorname{cog}_{0} \cdot \frac{\sigma_{2}^{2}}{Q_{2}}+W_{1}=U_{1} Q
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{U_{0}^{2} C_{0}(d-d x) d}{d-\Delta x}+\frac{\Delta f_{0}^{2}\left(d d a(A x)^{2}\right.}{Z d d^{2}}=\frac{d+\Delta x}{d v}\left(a_{0}\right)^{2}\left(0-\frac{2 \sqrt{0}\left(d_{d}\right)}{2 d}\right)-\frac{U_{0} C_{0} d}{d-\Delta x} \\
& \Delta W=\frac{-\Delta x}{d-\Delta x}\left(U_{0}^{2} C_{0}+\frac{2 I_{0}^{2}}{2}\right)=\frac{-\Delta x}{d-\Delta x} \cdot u_{0}^{2} C_{0} \\
& \Delta \omega / W=\frac{-\Delta x}{d}\left(U_{0}^{2} l_{0}+\frac{2 \delta_{0}^{2}}{2}\right) \cdot \frac{1}{U_{0}^{2} \omega_{0}+\frac{2 I_{0}^{2}}{2}}=\frac{-\Delta x}{d}=-\sigma \\
& f_{0}=\frac{2 \pi}{\omega_{0}}=\frac{2 \pi}{\sqrt{2} c_{0}} \quad T_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi}{V_{2 C_{1}}}-\frac{2 \pi}{2 \pi \sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}=2 \pi \sqrt{2 C_{0}} \quad T_{1}=2 \pi \sqrt{2 C_{1}}=2 \pi \sqrt{2 C_{0} \cdot \frac{d-d x}{d}} \\
& \Delta T=2 \pi \sqrt{2 C_{0}}(\sqrt{d-\Delta x} \sqrt{d x}-1)=-2 \pi \sqrt{2 C_{0}} \cdot \frac{\sqrt{d-\Delta x}-\sqrt{d D}}{\sqrt{d \pi}}
\end{aligned}
$$

длдоœь N

4
3

$$
\Delta T / T_{0}=\frac{\sqrt{d-\Delta x}-\sqrt{d})}{\sqrt{d}}
$$

Jungon: $\Delta U / U_{0}=\frac{\Delta x}{d-\Delta x} \quad \Delta W / W_{0}=\frac{-\Delta x}{d} \quad \Delta T / T_{0}=\frac{\sqrt{d-\Delta x}-\sqrt{d}}{\sqrt{d}}$
3.1.3. $U_{0} W_{0}=\frac{Q}{Q_{d}}: U_{0} C_{a}=\tan =\frac{Q}{U_{0}^{2}}$

$$
u_{1}: w_{1}=\frac{Q_{1} d}{q_{0}(d-\Delta x)}: \frac{u_{0}^{2} q_{0 d} d}{\|_{\cdot}(d-\Delta x)}=\frac{Q}{u_{0}^{2}} \quad h: 003 \text {. }
$$

3.1.4. $T_{0}{ }^{2} \cdot W_{0}=4 \pi^{2} \cdot 2 C_{0} \cdot U_{0}{ }^{2} C_{0}=4 \pi^{2} 2 C^{2} U_{0}{ }^{2}$

$$
\begin{array}{r}
T_{j}^{2} \cdot W_{1}=4 \pi^{2} \cdot L C_{0} \cdot \frac{d-\Delta x}{d} \cdot \frac{U_{0}^{2} C_{0} d}{d \cos x}=4 \pi^{2} 2 c^{2} U_{0}^{2} \\
h \cdot s^{0} \cdot 3 .
\end{array}
$$

3.2.2. $W_{0}=U_{0}{ }^{2} C_{0}$

$$
W_{1}=\frac{U_{0}^{2} C_{0} d}{d-\Delta x}
$$

$$
\begin{aligned}
& m=\log _{0,2} 0 \\
& T_{0}=\frac{T_{0}}{2}+\frac{T_{1}}{2}=\pi \sqrt{2 C_{0}}+\pi \sqrt{C_{0} \cdot \frac{d-\Delta x}{e}}=\pi \sqrt{2 C_{0}}\left(1+\sqrt{\frac{d-\Delta x}{d}}\right) \\
& t=m T_{0}
\end{aligned}
$$

$$
t=m T_{0}
$$

sungon:t $=\log _{0, s s} \theta_{1}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{H}_{3}=\frac{a n)^{2} o c h}{}= \\
\left\{u_{0}^{2} C_{0} \cdot\left(\frac{d}{d-x x}\right)^{m}=\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{u_{0}{ }^{2} C_{0} \cdot\left(\frac{d}{d-x x}\right)^{m}=\Delta 0 \cdot u_{0}{ }^{2} C_{0}\right. \\
& \operatorname{don}\left(\frac{d}{d-d x}\right)^{m}=n \\
& \left(\frac{d-\Delta x}{d}\right)^{m}=\frac{1}{n} \\
& (1-0,01)^{m}=0,1 \\
& (0,99) m=0,1 \\
& \text { usith } \quad m=\log 0,2
\end{aligned}
$$

$\left\{\begin{array}{l}m_{2} v_{0}=m_{1} v_{1}+m_{2} v_{2} \\ \frac{m_{2} v_{0}}{2}=\frac{m_{1} v^{2}}{2}+\frac{m_{2} v_{2}}{2}\end{array}\right\} \Rightarrow\left\{\begin{array}{l}v_{2}=v_{0}-\frac{m_{1} v_{1}}{m_{2}} \\ m_{2} v_{0} 2=m_{1} v_{1} 2+m_{2} v_{2} 2\end{array}\right.$
OnAm $m_{1} v_{1}+m_{1} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}$

$$
m_{1}\left(v_{1}+\left(m_{1} m_{2}\right) v_{2}\right)=m_{1}\left(v_{1}^{\prime}+\left(m_{2}+m_{1}\right) v_{2}^{\prime}\right)
$$

$m_{2} m_{0}^{2}=m_{1} v_{1}^{2}+m_{2} v_{0}^{2}+\frac{m_{2} m_{1}^{2} v_{1}^{2}}{m_{2}{ }^{2}}-2 m_{2} v_{0} \frac{m_{1} v_{1}}{m_{2}}$
$m_{1} \operatorname{ric}^{2} v_{1}{ }^{2}\left(m_{1}+\frac{m_{1} z}{m_{2}}\right)-v_{1}$ d $2 m 1 v_{0} \neq 0 m_{1}+\left(m_{1}+m_{1}\right) v_{0}{ }^{2}$

$$
\left[\begin{array}{l}
v_{1}=0 \\
v_{1}\left(m_{1}+\frac{m_{1}}{m_{2}}\right) \\
m_{2}
\end{array}\right) \Rightarrow\left[\begin{array}{l}
v_{1}=0 \\
v_{1}=\frac{2 v_{0}}{m_{1}+v_{1}}
\end{array}=\frac{2 v_{0} m_{2}}{m_{1}+m_{2}}\right]=?
$$

$\Rightarrow \quad\left\{\begin{array}{l}V_{1}=0 \\ \left.V_{2}=v_{0} \quad D=4 m_{1}{ }^{2} v_{0}{ }^{2}+4 v_{0}{ }^{2}\left(m_{1}+m_{2}\right) \cdot \frac{m_{1} m_{2}+m_{1}{ }^{2}}{m_{2}{ }^{2}+m_{2}}==1 m_{1}+m_{2}\right)=\end{array}\right.$

$$
=4 m_{1} v_{0}^{2}\left(4 m_{1}+m_{1}+m_{1} \cdot \frac{m_{1}+m_{2}}{m_{2}}+m_{2} \cdot \frac{m_{1}+m_{2}}{m_{2}}\right)=
$$

$=4 m_{1} v_{0}{ }^{2} \frac{m_{1} m_{2}+m_{1}{ }^{2}+m_{1} m_{2}+m_{1} m_{2}+m_{2}{ }^{2}}{m_{2}}=4 m_{1} v_{0} ? \frac{3 m_{1} m_{2}+m_{1}{ }^{2}+m_{2}^{2}}{m_{2}}=$
$=4 m_{1} v_{0}^{2}\left(3 m_{1}+m_{2}+\frac{m_{1}^{2}}{m_{2}}\right)$

дşo@s N
4

samgsts N
1
 कुम्डз $\quad l=2 \pi r=7 r=\frac{l}{2 \pi}$

$$
\begin{aligned}
& \text { songo: } \varphi=7 w_{1} t_{1}+6 w_{2} t_{2}
\end{aligned}
$$

